Mole Concept & Stoichiometry

1. What does one mole of a substance always contain?

А	a. 6.02 × 10 ²² particles
В	3. 6.02 × 10 ²³ particles
C	C. 1.00 dm³ of gas
D	0. 24.0 dm³ of gas
2. Which	h expression is used to calculate the number of moles from mass?
А	a. mass × molar mass
В	3. mass ÷ molar mass
С	C. molar mass ÷ mass
D). mass × Avogadro's constant
3. At RT	P, the volume occupied by 1 mole of any gas is
А	a. 22.4 dm³
В	3. 24.0 dm³
С	C. 6.02 dm ³
D	0. 1.00 dm³
4. The e	empirical formula of a compound represents:
А	. The total number of atoms
В	3. The actual molecular mass
C	C. The simplest whole-number ratio of atoms

b. The diadical artangement
5. Which step must be done FIRST in any stoichiometric calculation?
A. Convert mass to moles

B. Identify the limiting reagent

D. The structural arrangement

- C. Balance the chemical equation
- D. Calculate percentage yield
- 6. Which substance is the limiting reagent?
 - A. The one with the largest mass
 - B. The one in excess
 - C. The one that reacts completely first
 - D. The product formed
- 7. Percentage yield is calculated using:
 - A. theoretical ÷ actual × 100
 - B. actual ÷ theoretical × 100
 - C. mass ÷ volume × 100
 - D. moles × molar mass
- 8. If the percentage yield is less than 100%, this usually indicates:
 - A. Reaction was reversible
 - B. Measurement error only
 - C. Product loss or side reactions
 - D. Excess reactant was used

9. Atom economy measures:	
A. Reaction speed	
B. Reaction yield	
C. Efficiency of atom usage	
D. Reaction equilibrium	
10. A reaction with high atom economy is considered:	
A. Dangerous	
B. Reversible	
C. Environmentally friendly	
D. Slow	
11. Which unit is correct for concentration?	
A. g dm ⁻³	
B. mol g ⁻¹	
C. mol dm ⁻³	
D. dm³ mol ⁻¹	
12. Which quantity changes when converting moles to mass?	
A. Avogadro's constant	
B. Chemical formula	
C. Molar mass	
D. Number of particles	
13. Which gas volume should be used at STP?	
A. 24.0 dm³	
B. 22.4 dm³	
C. 1.00 dm ³	

D. 6.02 dm³

14. Which is required to calculate the molecular formula from the empirical formula?
A. Percentage composition
B. Relative atomic mass
C. Relative molecular mass
D. Balanced equation
15. Which always remains constant in a balanced equation?
A. Mass of reactants
B. Number of atoms
C. Volume of gases
D. Number of moles
Acids, Bases & pH
710140, 24000 6 p.1
16. According to the Brønsted–Lowry theory, an acid is a:
16. According to the Brønsted–Lowry theory, an acid is a:
16. According to the Brønsted–Lowry theory, an acid is a: A. Proton acceptor
16. According to the Brønsted–Lowry theory, an acid is a: A. Proton acceptor B. Electron donor
16. According to the Brønsted–Lowry theory, an acid is a: A. Proton acceptor B. Electron donor C. Proton donor
16. According to the Brønsted–Lowry theory, an acid is a: A. Proton acceptor B. Electron donor C. Proton donor D. Hydroxide producer
16. According to the Brønsted–Lowry theory, an acid is a: A. Proton acceptor B. Electron donor C. Proton donor D. Hydroxide producer 17. Which species is the conjugate base of HCI?
16. According to the Brønsted–Lowry theory, an acid is a: A. Proton acceptor B. Electron donor C. Proton donor D. Hydroxide producer 17. Which species is the conjugate base of HCI? A. H ₃ O ⁺

D. Contain more hydrogen
19. A solution with pH = 3 is:
A. Neutral
B. Weakly acidic
C. Strongly acidic
D. Alkaline
20. Each decrease of 1 pH unit represents:
A. 2× increase in [H ⁺]
B. 5× increase in [H⁺]
C. 10× increase in [H⁺]
D. 100× increase in [H ⁺]
21. The pH scale is described as:
A. Linear
B. Exponential
C. Logarithmic
D. Quadratic

18. Strong acids differ from weak acids because they:

A. Are more concentrated

B. Ionise completely in water

C. Have lower pH values always

22. A solution with high pH has:	
	A. High [H⁺]
	B. Low [H ⁺]
	C. No ions
	D. Neutral charge
23. pH	+ pOH always equals:
	A. 7
	B. 10
	C. 12
	D. 14
24. Wł	nich indicator turns pink in an alkaline solution?
	A. Litmus
	B. Methyl orange
	C. Phenolphthalein
	D. Universal indicator
25. A r	neutralisation reaction always forms:
	A. Salt only
	B. Water only
	C. Acid and base
	D. Salt and water

26. The equivalence point of a strong acid–strong base titration is at pH:
A. 3
B. 5
C. 7
D. 9
27. Buffers resist changes in pH by:
A. Removing water
B. Neutralising strong acids only
C. Removing added H ⁺ or OH ⁻
D. Increasing temperature
28. A buffer solution is made from:
A. Strong acid + strong base
B. Weak acid + its salt
C. Strong acid + water
D. Strong base + salt
29. Which ion causes acidity in aqueous solutions?
A. OH-
B. H ₂ O
C. H⁺
D. Na⁺

30. A dilute strong acid can have a higher pH than a concentrated weak acid because:	
A. Strength depends on volume	
B. pH depends on [H ⁺]	
C. Weak acids are neutral	
D. Strong acids react faster	
Organic Chemistry	
31. A hydrocarbon contains only:	
A. C and O	
B. C and H	
C. H and O	
D. C, H, and O	
32. Which homologous series contains only single bonds?	
A. Alkenes	
B. Alkynes	
C. Alkanes	
D. Alcohols	
33. The functional group of an alcohol is:	
A. –COOH	
B. –NH ₂	
C. –OH	
D. –CHO	
34. Alkenes undergo which type of reaction?	

A. Substitution
B. Addition
C. Elimination
D. Condensation
35. Which molecule is unsaturated?
A. Ethane
B. Ethene
C. Methane
D. Propane
36. The suffix for carboxylic acids is:
A. –ol
B. –one
C. –al
D. –oic acid
37. Which reaction forms an alkene from an alcohol?
A. Oxidation
B. Addition
C. Elimination
D. Substitution
38. Oxidation of ethanol produces:
A. Ethane
B. Ethene
C. Ethanal/ethanoic acid
D. Methanol

A. Gain of oxygen	
B. Loss of hydrogen	
C. Gain of hydrogen	
D. Loss of electrons only	
40 Mileigh and diving in growing differential of halo allows and	
40. Which condition is required for elimination of haloalkanes?	
A. Cold dilute NaOH	
B. Warm aqueous NaOH	
C. Hot alcoholic NaOH	
D. UV light	
41. Addition polymerisation requires monomers with:	
A. –OH groups	
B. –COOH groups	
C. C=C bonds	
D. –NH ₂ groups	
40. Occidentalism and residential and according	
42. Condensation polymerisation always produces:	
A. CO ₂	
B. Water or HCl	
C. Oxygen	
D. Hydrogen	
43. Which bond forms in polyesters?	
A. C–C	
B. Ester linkage	
C. Amide linkage	
D. Hydrogen bond	

39. Reduction involves:

44. Benzene is stable due to:	
A. Sigma bonds only	
B. Delocalised π electrons	
C. Triple bonds	
D. Ionic bonding	
45. Which reaction preserves the aromatic ring?	
A. Addition	
B. Substitution	
C. Elimination	
D. Polymerisation	
46. Which reagent is used for free-radical substitution?	
A. NaOH	
B. HBr	
C. Cl ₂ + UV	
D. H ₂ SO ₄	
47. Isomers have the same:	
A. Structure	
B. Functional group	
C. Molecular formula	
D. Empirical formula only	
48. The general formula of alkenes is:	
A. $C \square H_2 \square_{+2}$	
B. C□H₂□	
C. $C \square H_2 \square_{-2}$	
D. C□H□	

49. Which compound can form hydrogen bonds?
A. Ethane
B. Ethene
C. Ethanol
D. Ethyne
50. Reflux is used to:
A. Increase yield by cooling

B. Prevent reactant loss during heating

C. Speed up filtration

D. Separate products

Markscheme:

1.	В
2.	В

3. B

4. C

5. C

6. C

7. B

8. C

9. C

10. C

11. C

12. C

13. B

14. C

15. B

16. C

17. B

18. B

19. C

20. C

21. C

22. B

23. D

24. C

25. D

26. C

27. C

28. B

29. C

30. B

31. B

32. C

33. C

34. B

35. B

36. D 37. C

38. C

39. C

40. C

41. C

42. B

43. B

44. B

45. B

46. C

47. C

48. B

49. C

50. B